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The ring opening of glycidols with N-(2-fluorophenyl)tol-
uene-p-sulfonamide under SL-PTC conditions, followed by
ring closure with ButOK, provides a novel high yielding
synthesis of 2-substituted 3,4-dihydro-2H-1,4-benzoxaz-
ines.

3,4-Dihydro-2H-1,4-benzoxazine derivatives have received
considerable attention due to their wide range of biological and
therapeutic properties.1 The 1,4-benzoxazine skeleton is usually
built up by cyclocondensation of o-aminophenols with various
dibromo derivatives2 or a-halogeno acyl bromides.3 Recently
2-vinyl-1,4-benzoxazines have also been prepared with ees up
to 79% by reaction of (Z)-1,4-diacetoxybut-2-ene with N-
protected o-aminophenols in the presence of a palladium
catalyst associated with phospine ligands.4,5

Following an alternative approach we devised a novel
synthesis of 2-substituted 3,4-dihydro-2H-1,4-benzoxazines
through formation of the C–N bond by ring opening of glycidols
with a suitable nitrogen nucleophile. The benzoxazine synthesis
could be completed through nucleophilic aromatic substitution
of a good leaving group incorporated in the incoming
nucleophile. We report herein our preliminary results in this
area which reveals that the new approach enables the efficient
synthesis of non-racemic chiral 2-substituted benzoxazines.

In previous papers we reported on the ring opening of
epoxides with nitrogen nucleophiles under solid/liquid phase
transfer catalysis (SL-PTC) conditions affording corresponding
b-hydroxyamides in good to excellent yields.6,7 On the basis of
these results and due to the good nucleofugality of fluoride
anion in aromatic nucleophilic substitution, N-(2-fluorophe-
nyl)toluene-p-sulfonamide 1 was chosen as the nitrogen
nucleophile incorporating the aromatic moiety of benzoxazine
and the leaving group.

Thus, the ring opening was performed by stirring at 90 °C a
heterogeneous mixture of 1,2-epoxy-3-phenoxypropane 2a,
sulfonamide 1 (1.1 equiv.), anhydrous K2CO3 (0.1 equiv.),
BnEt3NCl  (0.1 equiv.) and dioxane, affording N-(2-fluoro-
phenyl)-N-(2-hydroxy-3-phenoxypropyl)toluene-p-sulfonamide
3a in 95% yield after 17 h (Scheme 1). The optimisation of
reaction conditions (Table 1) led us to discover that the best
results were obtained without solvent,  giving 94% of 3a after
1 h. The PTC agent is essential in order to give high yields in

short reaction times since 56 h were necessary to generate 86%
of 3a in the absence of BnEt3NCl.

The ring opening takes place in a completely regioselective
fashion, affording b-hydroxysulfonamides derived from the
nucleophilic attack on the less substituted carbon atom of the
oxirane ring. In accordance with the observed regiochemistry,
non-racemic chiral glycidols generate enantiopure b-hydroxy-
sulfonamides, as revealed in the case of (2S)-[(benzyloxy)-
methyl]oxirane (S)-2b which generates (2R)-N-(2-fluorophe-
nyl)-N-(2-hydroxy-3-benzyloxypropyl)toluene-p-sulfonamide-
(R)-3b in 90% yield after 2 h.‡

With a viable route to b-hydroxysulfonamides 3 in hand, it
remained to perform the ring closing step to demonstrate the
utility of this strategy. The 1,4-benzoxazine ring can be formed
by intramolecular nucleophilic substitution (SNi Ar) of fluoride
anion promoted by a suitable base. In particular the base should
selectively generate the alkoxide anion without direct substitu-
tion of fluoride. Only isolated examples of SNi Ar of fluoride
anion by thiolate8 or phenolate anion9 have been reported along
with a single example of bromide substitution by phenolate.10

The task was achieved with a cheap non-nucleophilic strong
base such as ButOK. In fact N-tosyl-2-phenoxymethyl-

† Experimental and spectral data for 3a,b, 4a,b and 5a,b are available from
the RSC web site, see http://www.rsc.org/suppdata/cc/1999/2095/

Table 1 Synthesis of b-hydroxysulfonamide 3a

Entry Epoxide Dioxane/M t/h Yield (%)b

1 2a 2.5 17 95
2 2a 10 3 85
3 2a — 1 94
4 2a — 56 86c

5 (S)-2b — 2 90
a All reactions carried out using 1.1 equiv. of sulfonamide 1, 0.1 equiv. of
BnEt3NCl and 0.1 equiv. of anhydrous K2CO3. b Isolated yield. c Without
BnEt3NCl.

Scheme 1 Reagents and conditions: i, K2CO3–BnEt3NCl, 90 °C; ii, ButOK,
THF, reflux; iii, Na, naphthalene, DME, 278 °C.
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1,4-benzoxazine 4a was isolated in 85% yield when reacted
with ButOK in THF for 30 min at reflux. Moreover the yield
could be increased up to 92% by portionwise addition of
ButOK. Similarly (R)-3b was converted into the corresponding
1,4-benzoxazine (R)-4b in 86% yield after 1 h.

It is likely that the ring closure proceeds through a pure SNi
Ar mechanism due to the activation exerted by the p-
tolylsulfonyl group even though an SRN1 or benzyne pathway
cannot at the moment be ruled out.

In order to probe the scope and limitations of the process, N-
(2-chlorophenyl)-N-(2-hydroxy-3-phenoxypropyl)toluene-p-
sulfonamide 7 was prepared in 94% yield by ring opening of 2a
with N-(2-chlorophenyl)toluene-p-sulfonamide 6 as previously
described. However 7 did not generate the corresponding
benzoxazine when treated with ButOK. 

Removal of the N-tosyl group with Na/naphthalene11 gave
the unprotected 1,4-benzoxazines 5a, (R)-5b in 77–84% yield.
Conversion of (R)-5b into the corresponding Mosher amide
confirmed that the ring closure occurs without racemisation.§

In view of the availability of a wide variety of enantiopure
epoxides12 this method provides a straightforward and new
approach towards the synthesis of chiral 2-substituted 3,4-dihy-
dro-2H-1,4-benzoxazines since the stereocenter of the epoxide
is not affected during the ring opening and the next cyclisation
occurs without racemisation.
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zioni’) is acknowledged.

Notes and references
‡ 19F NMR analysis of the Mosher’s ester (ref. 13) prepared from (R)-3b
and (R)-a-methoxy-a-(trifluoromethyl)phenylacetyl chloride showed a
single signal for the aromatic fluorine at d 2118.607, whereas the
diastereomeric esters obtained from racemic 3b showed two separated
signals at d 2118.319 and 2118.607.
§ 1H NMR analysis of the Mosher’s amide prepared from (R)-5b and (R)-a-
methoxy-a-(trifluoromethyl)phenylacetyl chloride showed a single signal

for the methoxy group at d 3.82m, whereas the diastereomeric amides
obtained from racemic 5b showed two separated signals at d 3.76 and
3.82.
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